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Abstract

Introduction: We compared genetic variants between Alzheimer’s disease (AD) and

two age-related cancers—breast and prostate —to identify single-nucleotide polymor-

phisms (SNPs) that are associated with inverse comorbidity of AD and cancer.

Methods: Bayesian multinomial regression was used to compare sex-stratified cases

(AD and cancer) against controls in a two-stage study. A ±500 KB region around each

replicated hit was imputed and analyzed after merging individuals from the two stages.

ThemicroRNAs (miRNAs) that target the genes involving these SNPswere analyzed for

miRNA family enrichment.

Results:We identified 137 variants with inverse odds ratios for AD and cancer located

on chromosomes 19, 4, and 5. The mapped miRNAs within the network were enriched

for miR-17 andmiR-515 families.

Discussion: The identified SNPs were rs4298154 (intergenic), within TOMM40/APOE/

APOC1, MARK4, CLPTM1, and near the VDAC1/FSTL4 locus. The miRNAs identified

in our network have been previously reported to have inverse expression in AD and

cancer.
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1 INTRODUCTION

The aging population, defined as 65 years or older, is expected to expe-

rience a substantial demographic shift. By the year 2060, this group is

expected to reach 98 million in the United States, placing an unprece-

dented burden on the health-care system.1 Due to the role of aging in

accumulation of physiological deterioration, the number of chronic dis-

eases affecting this population continues to rise and many individuals

suffer the co-occurrence of two or more diseases (ie, comorbidity).2 In

contrast to the coexistence of diseases, some chronic age-associated

diseases have been identified to be inversely comorbid—a lower-than-

expected occurrence of the secondary disease after the index/first
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diagnosis.3 These intriguing inverse associations between select diag-

noses have garneredmuch attention in the last few years, as they shed

light on the heterogeneity of age-associatedmultifactorial diseases.

Alzheimer’s disease (AD) and cancer are two predominant age-

associated diseases that are inversely comorbid as reported by several

epidemiological findings. In ameta-analysis of association studies from

1966 to 2013, ADpatients had a decreased incidence of cancer by 42%

and individuals with cancer history had 37% reduced risk of AD.4 In

a recent retrospective study of >3 million U.S. veterans, cancer sur-

vivors aged ≥65 years had a lower risk of AD than other age-related

outcomes. The odds ratio was 0.89 in 14 cancer types after excluding

melanoma, prostate, and colorectal cancer.5 These findings have fueled

numerous exploratory investigations into possible geneticmechanisms

that may be responsible for this inverse association between two com-

mon age-related diseases.

While genome-wide association studies (GWAS) have identified

multiple genetic loci contributing to either AD or cancer, no study

has reported cross-phenotypic effects of individual genetic variants.6–8

Therefore, we sought to detect variants that confer inverse risk for

AD and cancer by (1) harmonizing the intermediate risk factor—age,

between the two disease populations, and (2) directly comparing cases

which represent the two extremes of phenotypic variance to a com-

mon set of controls. The comparison of multiple cases to controls

(also known as cross-disorder studies) warrants the use of multinomial

logistic regression as it provides flexible framework to compare and

explore genetic relationships between these different phenotypes.9 In

this article, our goal is to test the relationship between AD and cancer

in a conservative setting of no single-nucleotide polymorphism (SNP)

effect exists between the two diseases, and we aimed to address this

goal by conducting a Bayesian multinomial GWAS (B-GWAS) to iden-

tify genetic variants that confer inverse risk in the aging population

between 60 and 80 years for AD and cancer, using the twomost preva-

lent age-related cancers: breast cancer and prostate cancer.10 Unlike

frequentist approaches, which use P-values to draw statistical infer-

ence in GWAS, B-GWAS uses Bayes factor to provide the strength

of the association evidence for each genetic locus.11,12 Multiple

GWAS scenarios such as fine-mapping of variants,13 pleiotropic and

regulatory variants use Bayesian methods in genome-wide studies to

achieve higher accuracy and prediction than frequentist approach.14

We conducted a B-GWAS in two phases—discovery and replication—

comparing AD and cancer to common controls. All datasets were strat-

ified by sex and harmonized on age. Replicated hits were further inves-

tigated in the merged dataset (discovery and replication) via B-GWAS

of imputed genotypes within 1Mbpwindow (±500 KB) of each hit, and
conditional analysis was used to identify secondary hits.

2 METHODS AND MATERIALS

2.1 Data description

We obtained access to datasets from Alzheimer’s Disease Genet-

ics Consortium (ADGC) (phs000372.v1.p1)15 and Breast Prostate

RESEARCH INCONTEXT

1. Systematic review:Multiple epidemiological studies have

reported an inverse relationship between Alzheimer’s

disease (AD) and cancer.However, single-nucleotidepoly-

morphism (SNP) studies investigating this relationship

have used genome-wide association studies (GWAS) sum-

mary statistics and combined cancers.

2. Interpretation: We found individual-level SNPs to confer

inverse odds ratio between AD and prostate and breast

cancer. We found a total of 137 variants; 21 variants

on chromosome 4 comparing prostate cancer and AD in

6258 males. In 3318 females comparing breast cancer

and AD against controls, we found 113 significant vari-

ants on chromosome 19 and three variants on chromo-

some 5.

3. Future direction: Our findings identify SNPs with cross-

phenotypic effects. Micro RNAs (miRNAs) targeting the

implicated regions have been reported to have inverse

expression between AD and cancer. These markers

have the potential to become genetic and blood-based

biomarkers, warranting simultaneous investigation in

both AD and cancer. Our future work will compare reg-

ulatory SNPs associated with AD and cancer.

HIGHLIGHTS

• Single-nucleotide polymorphisms (SNPs) exhibit cross-

phenotypic odds ratios between Alzheimer’s disease (AD)

and cancer.

• Genes containing/proximate to these SNPs are targets

of micro RNAs (miRNAs) that are inversely expressed

between AD and cancer.

• The miR-515 and -17 families were enriched among the

miRNAs gene network.

CancerCareConsortium (BPC3) (phs000812.v1.p1)16 via thedatabase

of Genotypes and Phenotypes (dbGaP)’s authorized application to

individual-level genotype data.We also obtained access to Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (www.adni-info.org) (see Sup-

plementary file3—Text S1 in supporting information for details). These

datasetswere chosenbecause all sampleswere genotypedon the same

platform—Illumina Human660W-Quad—to minimize any technical

bias andharmonization issueswhilemerging thedatasets andpotential

array-specific inaccuracies during imputation. The research protocol

for this project was reviewed by University of North Texas Health Sci-

ence Center Institutional Review Board on June 24, 2016, and deter-

mined to be exempt human subject research under IRB–2016-090.

http://www.adni-info.org
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The first cohort in the BPC3 dataset16—phs00812.

BreastProstateCancer.v1.p1.c1 (BPC3-c1)—had a total of 4915

participants. There were 2314 individuals in the prostate cancer

group with genotype data for 583,132 SNPs. The total num-

ber of individuals in the breast cancer group was 2601 with

genotyped data of 541,219 SNPs. The second cohort in BPC3—

phs00812.BreastProstateCancer.v1.p1.c4 (BPC3-c4)—had 4664

participants. The total number of individuals in the prostate cancer

group in this cohort was 4069 with genotype data for 583,132 SNPs.

The total number of individuals in the breast cancer group was 595

with genotyped data of 541,219 SNPs on hg18 build. The ADGC

dataset15 had genetic variant data of 6065 individuals genotyped on

the Illumina platform via Human660WQuad array. The ADC1 dataset

had 2905 individuals with 657,366 genotyped markers, and the ADC2

dataset had 1170 individuals with 657,366 genotyped markers on

hg19 build. We combined these two datasets for the final ADGC

dataset. From the ADNI cohort, we used the ADNI-1 dataset as it was

also genotyped on Illumina Human660W-Quad array. The ADNI-1

dataset had 757 individuals with 620,902 typed SNPmarkers.

2.2 Merging and quality control of datasets

For the discovery stage, we merged individual-level genotype data

from ADGC and BPC3 (c1) by aligning strand and genomic build to

hg19 using PLINK (v1.9).17 A total of 8990 individuals (self-described

European ancestry) remained in the merged dataset with 539,774

common genotyped SNPs. We then followed quality control protocol

outlined by Anderson et al.;18 principal components were calculated

using R package “SNPRelate.”19 After quality control (QC) in discov-

ery phase, 5350 individuals (females: 2672, males: 2678) and 539,774

SNPs remained.

For the replication stage, wemerged individual-level genotype data

from ADNI and BPC3 (c4) by harmonizing strand using the array man-

ufacturer’s documentation and converted to genomic build hg19. After

QC, 486,308 markers in 4226 individuals remained. This QC’d dataset

was stratified on sex, with 3580 males and 646 females. Details of QC

protocol and number of individuals removed at each stage are outlined

in Supplementary file3 FigureS2 in supporting information.

2.3 Bayesianmultinomial genome-wide
association studies

For the discovery stage, we conducted B-GWAS adjusted for age, and

ancestry—principal components (PCs) 1–10 (self-described as Cau-

casian/European ancestry)—using Trinculo20 with the default prior

parameter. The variance proportion for each of the first three PCs was

<2% for each dataset. There was no significant difference (P > 0.05)

in means of eigenvalues between phenotypes after the first three PCs;

calculated in EIGENSTRAT21 for both stages of datasets.We compared

896 males with AD and 997 males with prostate cancer to a combined

male control population of 785 individuals from the two datasets. Sim-

ilarly, we conducted B-GWAS in females, comparing 942 females with

AD and 460 females with breast cancer to a combined female control

population of 1270 individuals. We selected SNPs that were signifi-

cant with a joint log Bayes factor ≥ 3 and odds ratio (OR) in the oppo-

site direction for the twodiseases (OR_AD>1 andOR_breast/prostate

< 1 or OR_AD < 1 and OR_breast/prostate > 1). Next, in a replica-

tion phase, these top significant variantswere analyzed in independent

sample sets. Consideration of significance threshold and comparison to

P-values wasmotivated by works of Dr.Wakefield.11,22

For the replication stage, we followed the same QC protocol, com-

paring 149 males with AD, and 1046 males with prostate cancer, to

a combined control male population of 2385 individuals. Correspond-

ingly, association analysis was performed in 107 females with AD and

229 females with breast cancer to a combined female control popula-

tion of 310 individuals.

2.4 Regional genome-wide association studies

Imputation was performed using IMPUTE223 with a 1000 genomes

Phase 3 dataset for each of significant hit regions. The datasets from

the two stages were merged for a 1Mbp region (±500 KB) of the repli-
cated hits that were identified in the B-GWAS. Following SNP-level

QC, we performed a regional GWAS in 6258 males comparing AD and

prostate cancer against controls on chromosome 4. Similarly, follow-

ing QC, we performed regional GWAS in 3318 females comparing AD

and breast cancer against common controls on chromosomes 19 and 5.

For the regional GWAS on chromosome 19, we identified haploblocks

of the 1Mbp region using plink v1.9. There were four TOMM40 hap-

loblocks of 21, 6, 2, and 11 SNPs and one APOE haploblock containing

six SNPs. To identify higher risk SNPs between TOMM40 and APOE, a

total of four separate haploblock-based associations were conducted

merging each of theTOMM40 andAPOEhaploblocks, keeping only indi-

viduals with all SNPs (no missing data). To identify secondary hits on

chromosome 19, conditional tests were performed using APOE SNPs—

rs429358 and rs769449. For other regions, the top two significant

SNPs were used to perform conditional analysis.

2.5 SNP annotations and testing for
enriched processes

All significant SNPs were mapped to genes using Ensembl’s Ch37

Variant Effect Predictor (http://grch37.ensembl.org/Homo_sapiens/

Tools/VEP), and functional annotations were retrieved from SNP

nexus.24 Figures were plotted using ggplot2, gene annotations were

visualized with Gviz package, and a linkage disequilibrium (LD)

map was created using LDheatmap package in R. The mapped

genes were tested for functional and diseases processes and visu-

alized using Ingenuity Pathway Analysis (QIAGEN Inc., https://www.

qiagenbioinformatics.com/products/ingenuity-pathway-analysis).

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP
http://grch37.ensembl.org/Homo_sapiens/Tools/VEP
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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2.6 miRNA enrichment analysis and textmining
formiRNA expression

All the annotated significant geneswereused as input inmiRNet.25 The

miRNAnodes in networkwere filtered ondegree filter of 1.0, to reduce

orphanmiRNAs. The filtering prioritizesmiRNAswith at least two con-

necting query genes. The miRNAs in the network were then assessed

for miRNA family enrichment using a hypergeometric test, with a

P-value< 0.05 considered significant.

3 RESULTS

3.1 B-GWAS in sex-stratified Alzheimer’s disease
and cancer

We found 391 SNPs to be significant as shown in the bokeh plot (Fig-

ure 1, top panel) by comparing control males with males with AD and

males with prostate cancer (Supplementary file 1 Table S1). Similarly,

we tested the relationship of AD and breast cancer, by comparing

females with AD, and females with breast cancer against female con-

trols, which resulted in 287 significant loci (Supplementary file 1 Table

S3 in supporting information)with inverseORsbetweenADandbreast

cancer (Figure 1, bottom panel).

We evaluated these top significant SNP loci in another dataset of

individuals, merging Alzheimer’s population of ADNI-1, and breast and

prostate cancer population of BPC3 (c4) followed by QC procedures.

The QC’d dataset was then separated by sex. In this replication stage,

out of 391 significant SNPs from the discovery stage, 381 SNPs were

present in the replication dataset (Figure 2, top panel). The associa-

tion analysis, adjusted for age and PCs 1-10, revealed one SNP that

replicated in this dataset—SNP_allele: rs4298154_C an intergenic SNP

on chromosome 4, had the odds ratio of 0.775 for AD (logBF—1.9)

and 1.25 for prostate cancer (logBF—3.7) with an overall logBF of 5.14

(Supplementary file 1 Table S2 in supporting information).

In females, out of 287 significant SNPs from the discovery stage,

274 were present in the replication stage. The association test repli-

cated two significant loci (Supplementary file 1 Table S4 in supporting

information): (1) rs2075650_A had odds ratio of 0.52 for AD (logBF—

13.418) and 1.245 for breast cancer (logBF—3.17), with an overall

logBF of 14.458; (2) rs17700949_A, mapped on chromosome 5 near

C5orf15 and voltage-dependent anion channel 1 (VDAC1) gene, had

odds ratio of 0.817 for AD (logBF—1.74) and 1.256 for breast cancer

(logBF—2.483), with an overall logBF of 3.33 (Figure 2, bottom panel).

3.2 Regional B-GWAS of replicated SNP hits
and conditional analysis

To achieve finer SNP resolution, a 1Mbp region was imputed around

the replicated hits (±500 KB), hereafter referred to as "risk region"

in each dataset. The two datasets for this risk region analysis were

merged to improve power by increasing sample size. Following SNP-

level QC, a regional B-GWASwith default prior and adjustment for age

and PCs 1–10 from themerged datasets was performed in 6258males

comparing AD and prostate cancer against controls on chromosome

4. For the risk region in chromosome 4, a total of 3107 variants

were analyzed by B-GWAS and 21 SNPs were found to be significant

(Supplementary file 1 Table S5 in supporting information), the most

significant SNPs were (1) rs4298154_C having odds ratio of 0.813 and

1.223 for AD and prostate cancer, respectively, with overall logBF of

10.65; and (2) rs57139228_G having odds ratio of 0.888 and 1.155 for

AD and prostate cancer, respectively, with overall logBF of 5.41 (Fig-

ure 3). After conditioning on these hits, no SNPs remained significant.

Similarly, regional B-GWAS was performed in 3318 females com-

paring AD and breast cancer against common controls on chromo-

somes 19 and 5. Of 1499 variants in the risk region on chromo-

some 19, 113 SNPs were found to be significant (Supplementary file 1

Table S6 in supporting information). The top significant SNPs were (1)

rs34404554_Chavingodds ratios of 0.321and1.193 forADandbreast

cancer, respectively, with overall logBF of 179.46; (2) rs71352238_T

with odds ratio of 0.32 and 1.2 for AD and breast cancer, respectively,

with overall logBF of 178.81; and (3) rs2075650 having odds ratio of

0.325 and 1.178 for AD and breast cancer, respectively, with over-

all logBF of 175.59. All three SNPs were mapped to TOMM40. Select

top significant SNPs are labeled in Figure 4 (left panel). To identify

which SNPs between TOMM40 and APOE were most significant, we

conducted association with SNPs in each haploblock of TOMM40 and

APOE keeping individuals who had a complete set of SNPs. Here, we

found that APOE SNPs were more significant than TOMM40, and after

conditioning on the top twoAPOESNPs, noneof theTOMM40were sig-

nificant for bothdiseases; significancewasobservedonly forAD (logBF

> 1.5). Because the TOMM40 SNPs were not independent of APOEwe

conditioned the association analysis using APOE SNPs—rs429358 and

rs769449. After conditioning, none of the SNPs were significant for

both diseases.

The second replicated hit between AD and breast cancer was in

chromosome 5; we analyzed 2340 SNPs in this 1Mb region for inverse

association. A total of three SNPs remained significant including the

replicated hit (1) rs17700949_A having odds ratios of 0.873 (logBF—

4.24) and 1.174 (logBF—4.54) for AD and breast cancer, respectively,

with overall logBF of 6.18; (2) rs10068691_G having odds ratios of

1.13 (logBF—2.75) and 0.89 (logBF—2.17) for AD and breast cancer,

respectively, with overall logBF of 3.24; and (3) rs1109309_G having

odds ratio of 0.896 (logBF—2.54) and 1.136 (logBF—2.75) for AD and

breast cancer, respectively, with overall logBF of 3.48 (Figure 4, right

panel; Supplementary file 1 Table S7 in supporting information). All

three SNPs are in close proximity to one another and mapped to an

intergenic region between follistatin like 4 (FSTL4) and VDAC1 based

on GRCh37/hg19.

The significant SNPs in the regional B-GWAS of AD and prostate

cancer on chromosome 4 are in the intergenic region, and the nearby

genes are ARAP2,DTHD1, and KIAA1239. Additionally, annotation was

retrieved from the Genetic Association Database using SNP-nexus,

which showed association of these SNPs with HTRA3, AREG, and

NRAS (Supplementary file2). Interestingly, some of the variants in this
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F IGURE 1 Discovery phase B-GWAS results. Top panel: Bokeh plot of multinomial GWAS comparing Alzheimer’s disease (AD) and prostate
cancer in the discovery stage. The purpleManhattan plot shows the results fromAD versus control, and the blueManhattan plot shows the results
of prostate cancer versus controls. The y-axis is the logBF (log Bayes factor) for the respective disease, the significant SNPs are highlighted in
yellow, and their size is relative to the odds ratio as seen in the legend. Bottom panel: Bokeh plot of multinomial GWAS comparing AD and breast
cancer in the discovery stage. The purpleManhattan plot shows the results fromAD versus control, and the pinkManhattan plot shows the results
of breast cancer versus controls. The y-axis is the logBF (log Bayes factor) for the respective disease, the significant SNPs are highlighted in yellow,
and their size is relative to the odds ratio as seen in the legend. (Note: Bokeh plots are an intersection betweenManhattan and bubble plots)

region had a slightly higher combined annotation-dependent depletion

(CADD) score—rs4565101 had a score of 7.741, and rs58262946 at

6.342—suggesting that these SNPs are potentially deleterious.

In the regional B-GWAS of AD and breast cancer on chromosome

19, the significant SNPs mapped to PVRL2, CTB-129P6.4, TOMM40,

APOE, APOC1, APOC2, APOC4, APOC4-APOC2, CTB-129P6.11,

CLPTM1, RELB, AC005779.1, MARK4, AC006126.3, and AC005779.2,

and their functional annotation identified BCAM, ZNF107, ZNF92, and

ZNF138 (Supplementary file2). SNPs in the chromosome 5 risk region

are intergenic to FSTL4 and VDAC1. Other genes within 300 kb include

TCF7, SKP1, PPP2CA, CDKL3, and UBE2B. The top significant SNP—

rs17700949—had a CADD score of 4.224, genome-wide annotation of

variants (GWAVA) score of 0.53, and regulatory Mendelian mutation

(ReMM) score of 0.603, indicating a slightly deleterious effect.
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F IGURE 2 Replication stage B-GWAS results. Top panel: Bokeh plot of replication stage—multinomial GWAS comparing Alzheimer’s disease
(AD) and prostate cancer. Out of the 391 SNPs identified in the discovery stage based on the criteria for inverse and significant (ie, as OR< 1 for
Alzheimer’s andOR> 1 for cancer, or vice versa and an overall log Bayes factor of≥ 3), 381were typed in the replication dataset. Organized by
chromosome, the log Bayes factor for the analysis comparing AD to the common controls are shown in the upward facingManhattan plot (shaded
in light purple), and the log Bayes factor for the analysis comparing prostate cancer to the common controls are shown in the downward facing
Manhattan plot (shaded in light blue). One SNP from the discovery set was replicated based on inverse risk and strength of association, each
indicated by the labeled data points: rs4298154. Bottom panel: Bokeh plot of replication stage—multinomial GWAS comparing AD and breast
cancer. Out of the 287 SNPs identified in the discovery stage based on the criteria for inverse and significant (ie, as OR < 1 for Alzheimer’s andOR
> 1 for cancer, or vice versa and an overall log Bayes factor of≥ 3), 274were typed in the replication dataset. Organized by chromosome, the log
Bayes factor for the analysis comparing AD to the common controls are shown in the upward facingManhattan plot (shaded in light purple), and
the log Bayes factor for the analysis comparing breast cancer to the common controls are shown in the downward facingManhattan plot (shaded
in light pink). Two SNPs from the discovery set were replicated based on inverse risk and strength of association, each indicated by the labeled data
points: rs17700949 and rs2075650
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F IGURE 3 RegionalManhattan plot of chromosome 4 risk region for association betweenmales of Alzheimer’s disease (AD) and prostate
cancer. Left panel: In theManhattan plot, the purple background shows the logBF (log Bayes factor) for AD, and the blue background for prostate
cancer. A total of 21 SNPswere found to be significant in the 1Mbp—chr4 risk region; the plot highlights themost significant hits within the region.
The genomic coordinates are shown using GRCh37 from Ensembl, following the LD heat map of the corresponding region in the bottom panel. A
zoomed-in LDmap around the significant variants is shown at the bottom. Right panel: After conditioning on two SNPswith highest logBF, none of
the variants were significant for both AD and cancer with opposite odds ratios
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F IGURE 4 RegionalManhattan plot. Left panel: Chromosome 19 risk region for association between females of Alzheimer’s disease (AD) and
breast cancer. In theManhattan plot, the purple background shows the logBF (log Bayes factor) for AD, and the pink background for breast cancer.
A total of 113 SNPswere found to be significant in the 1Mbp—chr19 risk region; the plot highlights most significant hits within the region. The
genomic coordinates are shown using GrCh37 from Ensembl, following the LD heat map of the corresponding region in the bottom panel. A
zoomed-in LDmap around the significant variants is shown at the bottom. Right panel: RegionalManhattan plot of chromosome 5 risk region for
association between females of AD and breast cancer. In theManhattan plot, the purple background shows the logBF (log Bayes factor) for AD,
and the pink background for breast cancer. Three SNPs were found to be significant in the 1Mbp—chr5 risk region and highlighted in the plot. The
genomic coordinates are shown using GrCh37 from Ensembl, following the LD heat map of the corresponding region in the bottom panel. A
zoomed-in LDmap around the significant variants is shown at the bottom

3.3 Gene network analysis using ingenuity
pathway analysis

Weanalyzed the query genes to test for enriched processes using IPA’s

biobase knowledge. Some of the represented processes were inflam-

matory and cellular interactions, including LXR/RXRactivation,Wnt/𝛽-

catenin, PI3K/Akt, and sirtuin signaling pathway (Supplementary file3

FigureS3 in supporting information). The query genes resulted in two

networks (Supplementary file3 FigureS4 in supporting information);

wemerged the networks and examined for leading canonical pathways

(Figure 5).

3.4 miRNA annotation and enrichment analysis

We used the query genes to identify interacting miRNAs; the network

was constructed using miRNet25 (Figure 6). All the miRNAs in the

network were assessed for miRNA family enrichment; we observed

miR-515 (15 members) and miR-17 family (six members—miR-17,

20a, 20b 106a, 106b, and 93) to be significant (Supplementary file 3

Table S2). The miRNAs with the highest number of interactions (Sup-

plementary file 3 Table S3) were investigated to find the direction of

their expression changes in AD and cancer in the same tissuewherever

possible. Intriguingly, comparing their expression direction in the

same tissues, we see an inverse direction for these miRNA expression

levels in the two diseases. Examining for miRNA-SNP binding site,

we observed two SNPs—rs6859 and rs11556505—to disrupt binding

sites for multiple miRNAs (Supplementary file 3 Table S4 & S5).

4 DISCUSSION

Several GWAS have been conducted for AD, breast and prostate

cancer and recently some meta-analyses have investigated the
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F IGURE 5 IPA network based on genes identified by B-GWAS. Network created from query genes (highlighted in purple) using IPA’s biobase
knowledge

relationship between AD and cancer. Feng et al.26; Sanchez-Valle

et al.27 and Ibanez et al.28 have reported that the genetic relationship

between AD and cancer varies based on cancer subtypes. This is the

first study that focuses on analyzing cross-phenotypic differences of

SNPs using individual-level genotypes and targeting twomost common

age-associated cancers—breast and prostate cancer.

4.1 Genic context of SNP hits in Alzheimer’s disease
and cancer

Because the top hits for breast cancer were in the TOMM40/APOE

region, we conducted separate association analysis for SNPs in the

TOMM40 and APOE haplotypes among individuals with no missing

SNPs to determine whether TOMM40was independent of APOE. After

conditioning on the two APOE SNPs—rs429358 and rs769449—we

found that TOMM40 SNPswere eithermarginally significant for AD, or

insignificant for both AD and cancer. Therefore, our findings indicate

that the cross-phenotypic effects of SNPs exist in the TOMM40/APOE

region. Multiple GWAS have reported APOE’s association with risk for

AD.29 Intriguingly,APOEalsohasbeena subject of investigation for car-

cinogenesis. A meta-analysis conducted by Anand et al.30 reported a

negative association betweenAPOE4 genotypes and the overall risk for

cancer subtypes. Studies have reported that genotyping TOMM40’523

loci leads to a better prediction of AD over APOE predictions alone.31

In cancer, TOMM40 expression surface antigens were elevated in pan-

creatic cell lines, and gene expression was upregulated in ovarian can-

cer cell lines.32,33 This heterogeneous phenotypic association of the

TOMM40/APOE/APOC1 region is evinced in our association for AD and

cancer and is also summarized by Yashin et al.34

In the chromosome 19 region, we also identified SNPs within

MARK4 exhibiting an inverse relation between the two diseases.

MARK4 belongs to the microtubule affinity-regulating kinases family.

MARK4 and its family play role in phosphorylation of tau, mediated

by co-expression of amyloid precursor protein (APP) andMARK/Par-1,

as evidenced by their phosphorylated products in granulovacuolar

bodies in brain tissues of AD patients.35 In cancer, elevated MARK4

expression is found to be correlated with cancer severity in breast,
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F IGURE 6 miRNA network based on genes identified by B-GWAS. ThemiRNA network was generated from a list of all implicated genes/loci
identified in the B-GWAS; orange nodes are genes which are targeted by commonmiRNAs. Statistical enrichment of multiple family miRNAswas
observed (dark blue squares), and several miRNAs exhibit high connectivity. TwomiRNA families—miR-515 (dark pink squares) andmiR-17
(magenta squares)—show statistical enrichment

lung, and prostate neoplasms36 mediating via the upregulation of the

Wnt signaling and negative regulation ofmTORC. ElevatedMARK4 has

also been shown to stimulate tumorigenic properties in breast cancer

cells by impeding Hippo signaling.37 Another neighboring gene—cleft

lip and palate associated transmembrane protein 1 (CLPTM1)—in

this region was recently found to be independently associated with

AD in a GWAS-derived expression study.38 An interesting finding

here was that CLPTM1L/CRR9, a paralogue of CLPTM1, is widely

attributed as a risk factor for multiple cancer subtypes as informed

by genome-wide association and experimental studies.39–41 Inoue

et al. detected elevated expression of both CLPTM1 and CRR9 in oral

squamous cancer cells.39 APOC1 in this region is associated with the

formation of amyloid beta (A𝛽) plaques in AD and is underexpressed in

subjects with APOE4 genotype.42 Conversely, APOC1 is overexpressed

in cancer tissues and influences the MAPK pathway triggering cellular

expansion and motility.43 RELB expression is correlated with tumor

development and inflammatory processes44 and the cumulative effect

of rare variants in RELB is associated with amyloid burden in the

cortical region of AD patients.45

In the chromosome 4 risk region, the top variants are intergenic and

the nearest pseudogene SEC63 homolog (Saccharomyces cerevisiae)—

pseudogene 2 (SEC63P2)—has been associated with coronary artery

calcification46 and body mass index.47 The closest (≈850 KB) cod-

ing gene to this region is ARAP2. Expression of ARAP2 also has been

reported as part of a risk score prediction for pancreatic cancer by

Liu et al.48 Variants in ARAP2 are known to be TP53 binding sites, and

are associated with advanced prostate cancer.49 Experimental stud-

ies have highlighted the role of ARAP2 in cytoskeleton remodeling
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and axonal transport mediated by neurotoxin stress and dysregulating

motor neurons.50

Other loci implicated in inverse risk for breast cancer and AD are

mapped between FSTL4 and VDAC1 on chromosome 5 using GrCh37

build. VDAC1 is a key mitochondrial-mediated apoptotic protein that

acts via the BCL-2 pathway; VDAC1 also interacts with TOMM40 for

mitochondrial transport in the PINK-1/PARK pathway. In AD brain tis-

sue, higher VDAC1 expression is found in neurites with A𝛽 deposits.51

In cancer, metabolic reprogramming has been attributed to VDAC1,

and its apoptotic properties have become a pharmacological tar-

get of interest.52 The upstream gene to our significant variants was

FSTL4, known for its role in extracellular calcium ion binding. Inter-

estingly, in the latest genome build—GRCh38—our significant variants

are mapped to the FSTL4 gene. Genome-wide studies have reported

variants in this gene to be associated with lung carcinoma,53 cognitive

impairment,54,55 and hypertension.56

Overall, the genes containing the cross-phenotypic SNPs have

known pathological roles in both AD and cancer.

4.2 Role of enriched processes in Alzheimer’s
disease and cancer

The enriched biologic processes involved with our query genes were

sirtuin pathway, Wnt-signaling, liver X receptor-retinoid X receptor

(LXR-RXR), and PI3K/Akt mechanism. Our findings are consistent

with Ibanez et al., who reported dysregulation in Wnt-signaling—

upregulation in cancer, and downregulation in neurological diseases.

Wnt-signaling is implicated in metastatic cell proliferation.28 The

PI3K/Akt signaling is associated with metabolic dysfunction inducing

insulin stress via deregulation of insulin receptors. While cancer cells

are suspected to thrive on glycolytic byproducts from insulin stress,

the brain is affected by the disturbances in PI3K/Akt signaling and

exhibits cognitive deficits.57 LXR-RXR are a class of transcription

factors that also affect metabolic activity by regulating lipids and

inflammatory responses.58 Their expression in AD animal models has

been associated with cognitive deficits and increased A𝛽 levels in

cerebrospinal fluid.58 In cancer, LXR ligands interact with both Wnt

and Akt signaling pathways and induce pyroptosis—inflammation-

induced cell death.59 Sirtuin proteins are involved in both cancer and

AD probably due to their involvement in regulating mitochondrial

biogenesis, interacting with TOMM40 and VDAC1, and can detect

peripheral metabolic dysregulation.60 Altogether, the observed pro-

cesses seem to regulate metabolic activities of metastatic cellular

expansion and accumulation of amyloid burden in cancer and AD,

respectively.

4.3 Inverse expression ofmiRNAs and their role in
Alzheimer’s disease and cancer

To investigate the potential mechanisms that underlie the observed

genetic associations with inverse risk of AD and cancer, we turned our

focus to a genetic-based regulatory system—miRNAs.61 This provided

the rationale for asking the following question: could the inverse

effect of the genetic variants be due to miRNA-mediated differential

regulation of our candidate genes?

miRNAs are small non-coding RNA molecules that target multiple

regions in a gene and are expected to regulate ≈60% of transcripts;

thus, altering cellular metabolism. Due to their exosomal packaging,

they allow cross-talk through the blood–brain barrier and interact

with other organs.62 The reported genes are primarily targeted by

select miRNAs including the miRNA-17 and 515 cluster, 125b, 335,

and 26b, which are differentially expressed in AD and cancer (Table 1).

This SNP–miRNA relationship highlights the role of these miRNAs in

altering regulation of target regions identified from our study in AD.

The miRNA-17 cluster (including miRNA-106, 20, and 93) has been

reported to regulate APP expression in brain and neuronal cells of

sporadic AD patients.63 Additionally, miRNA-106 is downregulated

in the frontal cortex of AD patients, which increases A𝛽1-42 and

induces tau phosphorylation.64 As underscored in our results (Table 1),

members of this "onco-miR"65 family show inverse expression in the

setting of AD versus cancer. The MiR-515 family was also found to

be enriched in our network. The upregulation of miR-515 in cancer is

inversely correlated with survival of cancer patients.66 The miR-515

suppresses p21, which is required for inducing senescence, which is

also modulated by miR-106b’s overexpression.67 MiR-515 has been

reported to be downregulated in the temporal cortex of AD patients.68

The upregulation of miR-125b in multiple regions of the AD brain has

been known to correspond with neurofibrillary tangles, primarily in

the gray matter region of post-mortemAD brains.69 In human neuronal

cells, activation of NF-𝜅B pathways from deposition of A𝛽 results in

overexpression of miR-125b.70 On the other hand, 125b is under-

expressed in cancer cells, which initiates cancer hallmarks.71 125b

has also been observed to target BCL-2 and increase its apoptotic

activity via BMF in AD.69 miR-335 is found to be underexpressed in

multiple cancers, which is regulated in a cyclical mode by p53.72 In

contrariety, upregulation of miR-335 triggers p21 and lowers p53

expression, which leads to increases in tau levels in AD patients.73,74 In

amousemodel of AD,miR-335was overexpressed in the hippocampus

and lowering its expression was demonstrated to reduce cellular

cholesterol and alleviate cognitive impairment.75 The upregulation

of miR-26b triggers expression of cyclin-dependent kinase 5, which

initiates phosphorylation of tau and apoptosis in AD.76 Conversely,

increasing 26b results in anti-tumorigenic properties.77 Multiple

cancer types have been found to have underexpression of miR-26b.78

miR-34a has been reported to be over expressed in brain regions of AD

possibly resulting in dysregulation of synaptic andmetabolic activity.79

The dysfunction of p53 governs the expression of miR-34a80 which

is deficient in most cancers.81 In animal models of APP and prese-

nilin 1 knockout, lowering miR-34a mitigates cognitive symptoms of

AD.82

Overall, the identifiedmiRNAsplay a dominant role inADpathology

and their targets reported here warrant functional studies to charac-

terize their sequence-specific multi-gene regulation.
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TABLE 1 miRNAs expression in Alzheimer’s disease and cancer. (References in supplementary file 3 Table S1)

miRNA Cancer Tissue [Ref] Alzheimer’s disease Tissue [Ref]

hsa-miR-335 Downregulated Serum1

Plasma2

Tumor3

Upregulated Serum4

Aged astrocytes and

hippocampal brain5

hsa-miR-197 Upregulated Tumor6 Downregulated Serum7

Downregulated Tumor8,9 Upregulated Cortex, CSF10

hsa-miR-125b Upregulated Tumor11,12, serum13,

plasma14
Downregulated Serum15,16

Downregulated Tumor17,18 Upregulated CSF,19 frontal cortex20

hsa-miR-26b Downregulated Tumor21,22

Serum23

Upregulated Serum24

hsa-miR-17 Upregulated Serum25 Downregulated Blood29

hsa-miR-20a Upregulated Tumor30 Downregulated Brain31

hsa-miR-20b Downregulated Tumor32,33 Upregulated Serum34

hsa-miR-106b Upregulated Tumor35 Downregulated Cortex36

Downregulated Serum37 Upregulated Serum38

hsa-miR-93 Upregulated Tumor35,39, serum39 Downregulated Serum40

hsa-miR-515 Upregulated Tumor cell line41 Downregulated Brain42

hsa-miR-34a Downregulated Tumor43 Upregulated Brain44

hsa-miR-143 Downregulated Tumor, cell line45 Upregulated Brain46

4.4 Role of SNPs in disruptingmiRNAs and their
target binding sites

Our analyses provide evidence of potential connections between

miRNAs and genetic variants resulting in bidirectional effects between

AD and cancer. Studies have shown that variants present in the

3’untranslated region (3’UTR) ofmRNAs, known as poly-miRTs, change

the half-life of mRNAs, and thus, alter protein expression.83 Two of

our reported cross-phenotypic SNPs—rs6859 (PVLR2/NECTIN2) and

rs11556505 (TOMM40)—alter miRNA binding sites. SNP rs6859 is

found to alter binding site for miRNAs 143, 147, 199, 584, and 648.

The elevation of miRNA-143 reduces glucose uptake and promotes

cellular apoptosis in cancer cells.84 However, in AD, the elevation of

miR-143 is localized in neurons and is proportional to Braak stages of

neurofibrillary tangles in the locus coeruleus region of AD brains.85

OthermiRNAs—147, 199, and 584—are understudied in AD, but share

a common function of suppressing the tumor and inhibiting cancer

progression.86–88 This demonstrates that a single nucleotide variation

can alter sites for multiple miRNAs leading to variability in gene

expression. Using polymiRTs database,89 rs11556505 is documented

to modify miRsite for miR-484 (Supplementary file 3 Table S5). Among

several targets, miR-484 is reported to inversely alter Fis1 expression

that promotes mitochondrial fission.90 Fis1 interacts with sirtuin

complex to trigger cell migration and invasion, and is overexpressed

in cancer.91 In AD brain–derived fibroblasts and hippocampal tissue,

mitochondrial fission proteins including Fis1 are upregulated.92 While

the exact underpinnings of the interaction of Fis1 on the reported

TOMM40 site are unknown, we observe a common thread of mito-

chondrial dysregulation and sirtuin signaling leading to neuronal

dysfunction and cancer expansion. Therefore, this site necessitates

functional studies using whole-genome and RNA sequencing to evalu-

ate allele-specific expression of the reported SNP-miRNA-target site.

In conclusion, the induction of SNPs within and around these

UTR sequences can have multiple functional consequences by alter-

ing miRNA binding sites, generating multiple transcripts which may be

differentially targeted bymiRNA regulators.93 Variants inmRNA bind-

ing sites are relatively more common than variants in genes encoding

miRNAs.94 Our analysis identified SNPs that are indicative of causing

possible perturbations in miRNA binding sites. MiRNAs, either acting

individually or in combination, can thus result in differential transcrip-

tional regulation of multiple genes (Supplementary file3 Figure S5 in

supporting information). While we do not know the exact mechanisms

that lead to perturbations in gene expression from intergenic SNPs,

studies have shown that SNPs in non-coding regions such as introns,

lncRNAs, and intragenic regions can affect miRNA expression levels.95

Recent studies have identified the importance of these reported miR-

NAs either via literature-driven studies or meta-analyses.96,97 How-

ever, by studying individual SNP effects between AD and cancer, we

identified targets of the mentioned miRNAs. Changes in miRNA bind-

ing site due to SNPs can be compensated by redundancy inmiRNA tar-

geting (ie, another miRNA can target site as a result of base change),

which depends on codon degeneracy.98 For instance, some mem-

bers of miR-17 and miR-515 family have similar seed sequences—

“AAGUGC.”99

SNPs and miRNAs have immense potential in serving as genetic

and blood-based biomarkers for diagnostic purposes, and further

understanding the role of genetic predisposition will require stud-

ies of both cis and trans SNP effects. The genetic risk factors and

associated miRNAs identified here would ideally be validated in a

cross-conditional cohort of AD and cancer using microarray/RNA-seq
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to identify functional consequences of the SNPs implicated here that

exert cross-phenotypic effects between AD and cancer. Overall, these

miRNAs play contrary roles in both diseases, making it imperative to

investigate the strength of these miRNAs and identified targets to

observe the extent of their influence in rescuing cognitive dysfunc-

tion in AD. Our future work will investigate directionality of gene

expression in AD and cancer under the influence of aggregated SNPs.

4.5 Limitations and considerations

We attempted to restrict phenotypic and technical bias for the investi-

gation of this complex relationship between AD and cancer; however,

the following considerations are important when interpreting these

results. First, due to age and sex stratification, our study is under-

powered to detect all SNPs, which may be exhibiting cross-effects

between the two phenotypes. Second, because the ORs reported by

epidemiological findings vary substantially (even for the same cancer

types), we chose to remain conservative in our selection of priors for

the Bayesian approach. Third, we were not able to use APOE as a

covariate in the discovery phase. The genotyping of APOE is typically

conducted independent of genome-wide SNP typing for AD studies;

however, genotyping of APOE is not typical of cancer genetic studies.

To attempt to obtain APOE genotypes for the cancer cohorts, we relied

on imputation, which was not successful for all individuals. As an alter-

native, we adjusted for the APOE SNP (rs429358) as a conditional test

on merged populations for females and males in each TOMM40 hap-

loblock to test for independent effects between TOMM40 and APOE.

Additionally, conditioning enabled detection of secondary associations

(if any) in a local region that may have been otherwise obscured by the

APOE effect. Fourth, when we carried out analysis by using a relaxed

threshold on age (50–90) and higher priors, we get more hits including

the ones being reported here, which we presume to be false positives

or age-associated and not phenotype specific. This indicates that the

analysis is sensitive to cohort selection procedures and we chose a

more conservative approach to mitigate these confounding factors

by using a two-stage design with careful inclusion/exclusion criteria.

Finally, factors such as depression, education level, andmedical history

are important to consider for both AD and cancer. These variables

were absent from theADGCandBPC3 datasets obtained fromdbGaP;

therefore, such variables remained unaccounted. Because cancer

history was available for the ADNI cohort, individuals with positive

cancer historywere removed from analysis. For the ADGC cohort used

in our analysis, National Alzheimer’s Care Consortium had recorded

history of cancer (absence/presence) for 12.7% of individuals. Approx-

imately 3% (N= 62) of individuals had positive cancer history (all types

considered) and were subsequently removed from analysis. Because

cancer history was not available for the majority of the ADGC cohort

wewere unable to account for cancer history of all individuals from the

ADGC cohort (details in Fig S2–Supplementary File3). This limitation

certainly encourages additional, explicitly designed cohorts for future

studies of Alzheimer’s and cancer inverse comorbidity. We believe

our study has accounted for cancer in AD as per the most recent

data available resulting in valuable findings for both AD and cancer

research.
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